V5434T/H

THREE-WAY ROTARY VALVE PN10 AND H-EXTENSION

PRODUCT DATA

APPLICATION

The V5434T Three-Way Rotary Valve provides water temperature control in heating and air-conditioning applications. These valves are designed for accurate mixing control of supply water temperature and return-flow temperature.
The sturdy construction ensures long operating life and high reliability when used in combination with M6061 actuators. The special inner form of the housing and the all around changeable rotary plug allow the valve to be adapted to each possible application without having to drain the system. In combination with the distance-adjustable H -Extension, use in a wide range of pre-piped systems is possible.

FEATURES

- Chrome-plated plug for long life-span
- Optimized characteristics for supply water temperature control
- All around changeable rotary plug
- Reliable and easy mounting of electrical actuators
- Wide range of flow rates in two housing sizes
- Compact design
- Use for manifolds by accessory H-Extension
- Thermal insulation package included

SPECIFICATIONS

Nominal static pressure 10 bar; 1000 kPa
Maximum pressure drop dependent on type (see table on page 3)
Leakage rate

Ports

Angle of rotation
Packing
Material body
Material inner parts
Medium

Water temperatures
in the valve
Weight
Flow characteristic
< 1% of kvs
External threads with cap nuts 90°
Double O-ring lined
Cast iron (GG20)
Chrome-plated cast iron
Heating water according to VDI 2035 (oxygen concentration less than $0.2 \mathrm{~g} / \mathrm{m}^{3}, \mathrm{pH} 8 \ldots 9.5$)
$2 . . .130^{\circ} \mathrm{C}$, non-condensing dependent on type (see tables in section "Dimensions' on page 4) equal percentage

OPERATION

The valve controls a mixing water temperature by means of a rotating plug. The plug adjusts the water flow of two inputs with two control curves. The required flow water temperature is achieved by adding a proportion of return water to the boiler hot water. The V5434T has special control characteristics for optimal control performance.

SUITABLE ACTUATORS

Torque $[\mathrm{Nm}$]	OS no. 24 Vac float.	OS no. 230 Vac float.	OS no. 0/2...10V
10	M6061A1013	M6061L1019	M7061E1012

MOUNTING

Adjustments for Mixing Applications

Mounting the Actuator

SPECIFICATION AND ORDER NUMBER PER DN

OS No.	$\mathbf{D N}$	$\mathbf{k}_{\mathbf{v s}}$	Heat Flow	$\Delta \mathbf{p}$	Nominal Torque	Actuator	
		$\left[\mathbf{m}^{\mathbf{3} / \mathrm{h}]}\right.$	$[\mathbf{k W}]$	$[\mathbf{k P a}]$	$[\mathbf{N m}]$	Floating	Modulating
V5434T1010	25	2.5	$7-12$	100	10		
V5434T1028	25	4.0	$12-17$	100	10		
V5434T1036	25	6.3	$17-30$	100	10	M6061A1013	M6061L1019
V5434T1044	25	10.0	$30-50$	100	10		
V5434T1051	25	16.0	$50-70$	100	10		
V5434T1069	32	10	$30-50$	100	20		
V5434T1077	32	16	$50-70$	100	20		
V5434T1085	32	25	$70-100$	100	20		
V5434H1001	25	-	-	-	-		
V5434H1019	32	-	-	-	-		

ACCESSORIES

Connection Set	Description	DN	Pipe Size [mm]	Weight [kg]	OS No.
	Welding sockets with gasket and cap nut	$\begin{aligned} & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	WTU25 WTU32
	Soldering sockets with gasket and cap nut	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 32 \\ & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 18 \\ & 22 \\ & 28 \\ & 22 \\ & 28 \\ & 35 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.21 \\ & 0.21 \\ & 0.42 \\ & 0.42 \\ & 0.41 \end{aligned}$	LSU25-18 LSU25-22 LSU25-28 LSU32-22 LSU32-28 LSU32-35
	Internal threaded sockets with gasket and cap nut	$\begin{aligned} & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \text { STU25 } \\ & \text { STU32 } \end{aligned}$

DIMENSIONS

V5434T

Type	DN	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{g}	\mathbf{h}	\mathbf{R}	Weight $[k g]$
V5434T1010	25	55	32	110	89	55	51	182	$11 / 2$	2.2
V5434T1028	25	55	32	110	89	55	51	182	$11 / 2$	2.2
V5434T1036	25	55	32	110	89	55	51	182	$11 / 2$	2.2
V5434T1044	25	55	32	110	89	55	51	182	$11 / 2$	2.2
V5434T1051	25	55	32	110	89	55	51	182	$11 / 2$	2.2
V5434T1069	32	70	44	140	99	70	59	200	2	4.1
V5434T1077	32	70	44	140	99	70	59	200	2	4.1
V5434T1085	32	70	44	140	99	70	59	200	2	4.1

V5434H

Type	DN	\mathbf{a}	\mathbf{b}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{R}	Weight $[\mathbf{k g}]$
V 5434 H 1001	25	110	42	55	$0-25$	51	$11 / 2$	1.7
V 5434 H 1019	32	140	51	70	$0-50$	59	2	2.7

HYDRAULIC FUNCTION

Mixing

\square

Diverting

Characteristics

Spare Parts

- O-ring (part no.: 07169 9535)

VALVE DIMENSIONING

Honeywell Rotary Valves are employed mainly in hydraulic systems corresponding to the examples shown on page 2. The rotary valve can be set quite easily. In order to obtain good control characteristics, the pressure drop in the rotary valve should be about the same as the pressure drop in the "volume-variable" part of the pipe system, i.e. about 1.5... 4.0 kPA or $15 \ldots 40$ mbar. The following dimensioning diagram is based on this interrelationship. The setting is obtained as follows:

1. Find heat flow \dot{Q} in the diagram.
2. Move vertically upwards to the intersection with the corresponding $\Delta \vartheta$ line. On the vertical axis, the volume flow $\dot{\mathrm{V}}$ can be read off on the left in liters per hour.
3. Move horizontally to the right from the intersection with the $\Delta \vartheta$ line into the shaded section ($1.5-4.0 \mathrm{kPa}$). Here you will find the nominal rotary valve size to be selected.
4. From this intersection, go vertically downwards. Read off the pressure drop in the rotary valve in kPa (mbar).

$\begin{array}{lll}\text { Example } & \text { Given: } & \text { Heat flow } \dot{Q}=10 \mathrm{~kW}, \Delta \vartheta=15 \mathrm{~K}\left(\text { e.g. } 70 / 55^{\circ} \mathrm{C}\right) \\ & \text { Required: } & \text { Nominal rotary valve size and pressure drop }\end{array}$
Volume flow: $\dot{V}=\frac{\dot{Q}}{1.163 * \Delta \vartheta}=\frac{10}{1.163 * 15}=0.57 \mathrm{~m}^{3} / \mathrm{h}$
Result: According to the diagram, the correct valve size is DN25, $\mathrm{k}_{\mathrm{vs}} 4.0$ (V5434T1028). The pressure drop is 2 kPa or 20 mbar or 200 mm water column.
(Factor 1.163 contains the water density $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the specific heat capacity $4.19 \mathrm{~kJ} / \mathrm{kgK}$. $\Delta \vartheta$ is the temperature difference between supply and return flow in Kelvin)
Unit Conversion

$$
\begin{aligned}
1 \mathrm{~kW} & =3600 \mathrm{~kJ} / \mathrm{h} \\
& =860 \mathrm{kcal} / \mathrm{h} \\
1000 \mathrm{kcal} / \mathrm{h} & =1.163 \mathrm{~kW}
\end{aligned}
$$

Control Products

Honeywell AG
Böblinger Straße 17
D-71101 Schönaich
Phone: (49) 703163701
Fax: (49) 7031637493
http://europe.hbc.honeywell.com

